
IP RIGHTS IN
SOFTWARE

GUIDEBOOK
ON

2

About the IP Rights in Software Guidebook:

This guidebook was compiled by the New York State Science & Technology
Law Center to help answer questions about how to best protect intellectual
property rights relating to software innovation. The Guidebook walks readers
through use of patent, trade secret and copyright protection to maximize the
commercialization potential for new software.

About the New York State Science & Technology Law Center:

The New York State Science & Technology Law Center (NYS STLC) has been
a leading resource in technology commercialization for nearly a decade. Since
its inception, the NYS STLC has assisted with hundreds of commercialization
projects across New York State. It was established at the Syracuse University
College of Law by Empire State Development’s Division of Science, Technolo-
gy and Innovation (NYSTAR) to facilitate New York State’s economic develop-
ment by leveraging the experience and expertise of law faculty and SU College
of Law students to assist New York businesses and institutions in delivering new
and emerging technologies to the marketplace.

Advisement:

The information contained in this pamphlet is intended to be an introducto-
ry guide. No part of the guidebook, attachments, or related discussions con-
stitutes legal advice or written opinion of counsel. For legal advice, please
consult with an attorney.

Any opinions, findings, conclusions, or recommendations expressed are
those of the author and do not necessarily reflect the views of the New York
State Department of Economic Development.

© 2019 Technology Commercialization Law Program, All Rights Reserved
Research by Chris Horacek, Esq. and Kristian Stefanides, L’20

 3

4

1 Software...5
2 Patent Protection..6
 2.1 Patent Protection for Software..........................8
 2.2 Issues with Patenting Software.........................9
 2.3 USPTO Memos...10
 2.4 Novelty and Non-obviousness..........................12
 2.5 The Possibilities of
 Means-Plus-Function Claims ………….…………..14
 2.6 Patent Costs and Filing.....................................15
 2.7 Time for Receiving a Patent..............................16
 2.8 Strengths of Protecting Software
 with a Patent ...…………………………….....……..16
 2.9 Weaknesses of Protecting Software with a
 Patent …………………………………...……………..16
3 Trade Secret Protection ..17
 3.1 Elements of a Trade Secret...............................18
 3.2 Reasonable Precautions to
 Maintain Secrecy..19
 3.3 Misappropriation...20
 3.4 Advantages of Trade Secret Protection...........21
 3.5 Weaknesses of Trade Secret Protection.........21
4 Copyright Protection..21
 4.1 Disadvantages to Copyright Protection for
 Software..23
 4.2 Copyright Infringement.....................................23

Table of Contents

 5

6

Introduction

The advance of computers is marked by innovative improvements
in computer hardware, microchips, transistors, and memory stor-
age. These innovations have been protected as typical advances in
technology—through the patent system. Software innovations that
control computer tasks are more challenging to protect. Software
is not a machine or article of manufacture, but a written set of
instructions that takes expertise and time to create. Computers in-
clude sensors, actuators, monitors, and user interfaces, all of which
are controlled by software. The software created for such applica-
tions has been recognized as intellectual property, and businesses
are keenly interested in protecting it, but the best means of protec-
tion are evolving.

Intellectual property rights in technology generally can be protect-
ed with patents, copyrights, and trade secrets, or a combination of
the three. The challenge is to balance whether the cost of seeking
the protection is justified in view of the value it will provide and
decide which methods of protection should be utilized. This guide-
book provides an overview of how each of the three methods of
intellectual property (IP) rights is applied to protecting software,
and considerations for determining which to pursue. Trademarks
are a fourth type of intellectual property. They protect brands
used to identify products and services, and are not covered by this
guidebook.

1 Software

There are three aspects of software that are key to understand-
ing how to protect it: (1) the design and sequence of processing
functions that are executed by the software program, sometimes
referred to as the software architecture, (2) the source code written
in high-level programing language that comprises the instructions
for carrying out each computation or function that the program
performs, and (3) the object code that is machine readable binary

Guidebook on IP Rights in Software

 7

code compiled from the source code and loaded on and run by the
computer for which the program was written. Each method of pro-
tecting intellectual property rights applies only to certain aspects
of software. Generally, patents can be used to protect software
architecture, trade secrets can be used to protect source code, and
copyrights can be used to protect source code as well as the object
code compiled from the source code.

The right to protect inventions and original writings is provided
for by the United States Constitution in order to promote science
and useful arts and encourage innovation. Federal laws include the
US Patent Act, Copyright Act and the Defend Trade Secrets Act
of 2016. Trade secrets are also protected under common law and
state statutes. Each method of protecting IP rights in software has
advantages and disadvantages, and often a combination of two or
all three methods will provide the best protection. Patents, which
protect the architecture of the software program, are discussed in
section III; trade secrets, which represent a cost-effective method
for protecting source code and architecture that cannot be easily
reverse engineered, are discussed in section IV; and copyright pro-
tection for source code and its associated object code is discussed
in section V.

2 Patent Protection

Patents are granted by the United States Patent and Trademark
Office (USPTO) for fully disclosed inventions that are new, useful,
and not obvious to someone skilled in the art. The types of inven-
tions eligible for patent protection are processes, machines, articles
of manufacture, compositions of matter, designs, and certain types
of plants. There are areas of subject matter that the courts have
specifically excluded from eligibility for patent protection. For
example, scientific laws, mathematical formulas, abstract ideas,
and natural phenomena are not eligible for patent protection. The
rationale for excluding these categories is that they are discoveries,
rather than inventions, and allowing these general discoveries or
tools of invention to be monopolized would discourage rather than

8

encourage invention.

Applying these principles to software raises an issue. Neither
source code nor object code constitutes a process, machine, article
of manufacture, or composition of matter. However, the unique
sequence of processing functions that are executed by the software
program is a recognized type of process, and consequently the
workflow or ordered sequence of processing steps carried out by a
software program can be patented as a process, if the requirements
for patentability are met.

The process consists of the number and order of the groups of spe-
cific data processing functions that are performed by the software
code. Each group of data processing functions can be thought of as
a separate software routine or module, and consequently a software
process patent will protect the ordered sequence of processing
routines or modules that are specified and claimed in the patent.
Although source code and object code are not patentable per se, a
software patent will protect any source code and object code that is
programmed to carry out a process covered by the claimed process,
because by definition the code is designed to execute the patented
process. A software patent therefore protects not just one version of
source code or object code, but any source code or object code that
carries out the process claimed in the patent. This is a key advan-
tage of a software patent over a copyright of software.

When a patent is granted, the patent owner has the exclusive right
to exclude others from using software utilizing the patented pro-
cess, offering it for sale throughout the United States, or importing
it into the United States. Patent protection is typically enforceable
from issuance until the date 20 years from the filing date. An im-
portant consideration is that obtaining a patent does not guarantee
an owner the right to make and commercialize products that em-
body the patented technology without a license. An invention that
improves upon or uses preexisting patented technology requires a
license of the preexisting patent to avoid infringing the preexisting
patent. This is another reason that review of existing patent litera-

 9

ture is very important.

2.1 Patent Protection for Software

As mentioned above, mathematical formulas are not patentable,
and this restriction requires evaluation of the patentability of al-
gorithms, in general, versus a process implemented by a computer
program. An algorithm can be defined as a formula or well-defined
set of computational or processing steps that will solve a specific
problem, and generally, algorithms are not patentable. An algo-
rithm can be performed manually, with general computational soft-
ware, such as a spreadsheet, or by specialized application-specific
software. Since an unpatentable algorithm is a set of processing
steps and a potentially patentable software process is also a set of
processing steps, what is the difference between the two?

An algorithm typically solves one discrete problem or does one
computation, and the term applies to any implementation of the
algorithm, whether done manually, on a spreadsheet, or with ap-
plication-specific software. A software program typically employs
many algorithms performed by application-specific software in a
prescribed sequence to solve a composite problem that requires
many computations and processing activities. The individual,
application-specific algorithms in a program are often described
as software routines or modules, and the potentially patentable
process is the specific way in which the routines or modules are
sequenced and linked. In other words, the architecture defined by
the combination of routines and modules, which is typically de-
picted as a flow chart, can potentially receive patent protection.
Essentially one must demonstrate that the combination of routines
and modules can be used to perform a specific function or solve a
specific problem for a particular end user.

In considering whether to pursue patent protection, it is important
to understand the architecture will be disclosed as part of the patent
examination process. Even if ultimately the patent is denied, the
application is published and becomes available to competitors. It

10

is therefore very important to be familiar with the prior art in the
field and be able to distinguish the invention from it. This process
is somewhat complicated with software because the courts are still
considering the type of software patents that should receive patent
protection.

2.2 Issues with Patenting Software

Patenting software is an evolving field, and the best information
about the type of software patents that will be granted and upheld
by the courts comes from decisions the courts have made about
contested software patents. An example is the Alice Corp. v. CLS
Bank International case decided by the Supreme Court in 2014. An
overview of the Alice case follows.

The Alice case involved a computer-implemented method of re-
ducing settlement risk in financial transactions using a third-party
intermediary. Settlement risk refers to the risk that only one party
will satisfy its obligation under an agreed-upon financial transac-
tion. The patent at issue in the Alice case implemented a computer
system to set up shadow accounts to reflect the actual balances
of two financial institutions (banks), and thereafter instructed the
banks to make permitted transactions based on the account balanc-
es, thereby facilitating the exchange of financial obligations.

The Court concluded that “the concept of intermediated settlement
is a fundamental economic practice long prevalent in our system
of commerce, and the use of a third-party intermediary (or clearing
house) is a building block of the modern economy. Thus, interme-
diated settlement, like hedging, is an abstract idea.”

In reaching its determination, the Court laid out a two-part test for
determining whether a patent is ineligible, because it is directed to
exclude subject matter, such as an abstract idea or an algorithm.
First, the Court determines whether the claims of the patent are
directed toward one of the judicially excluded subject matters, such
as “abstract idea.” If so, the Court searches for additional elements

 11

in the claim that transform the excluded subject matter into patent-
able subject matter. The additional elements claimed must ensure
that the patent in practice amounts to significantly more than a
patent upon the abstract idea itself. In other words, the claim must
include a number of elements that limit the claim to solving a spe-
cific problem using application- specific software. The Court stated
that “[T]he relevant question is whether the claims . . . do more
than simply instruct the practitioner to implement the abstract idea
. . . on a generic computer.”

Regarding the patent at issue in the Alice case, the Court stated that
the function performed by the computer was “purely convention-
al,” and that the computer essentially did no more than keep elec-
tronic records. The Court found that the claims did no more than
recite the concept of intermediated settlement as performed by a
computer, and therefore added “nothing of substance to the under-
lying abstract idea.” Nevertheless, the court held open the potential
for software patents to meet patent eligibility criteria.

The Alice case illustrates the challenges associated with obtaining
a patent on new software. There remains no bright-line rule for
when software is patentable, although the courts continue to grap-
ple with it. While the case lays out an analytical framework, the
criteria within the framework are vague and open to interpretation.

The U.S. Patent and Trademark Office (USPTO) has attempted
to provide guidance through memos on subject matter eligibility
available. Current information can also be found in the Manual of
Patent Examining Procedure (MPEP) available on the uspto.gov
website.

2.3 USPTO Memos

In June 2014, the USPTO issued a memo to its patent examiners
(the 2014 memo). The 2014 memo stated that the Alice Corp. deci-
sion neither created a per se excluded subject matter category, such
as software or business methods, nor imposed special requirements

12

for patentability of software. The 2014 memo outlined an analyt-
ical framework for patent examiners to follow when considering
software and business method patent applications. First, examiners
determine whether the claim is directed to the four categories of in-
vention (process, machine, manufacture, or composition of matter).
If the claim does not fall within one of the four categories, it must
be rejected. If the claim does fall within one of the categories, the
examiner must follow the two-part analysis stated in Alice Corp. as
outlined above; i.e., if the description of invention subject matter
is an abstract idea, does it contain sufficient additional novel and
non-obvious elements to transform it into patentable subject matter.

The 2014 memo gives examples of what constitutes an abstract
idea: fundamental economic principles; certain methods of or-
ganizing human activities; ideas or concepts; and mathematical
relationships and formulas. “Fundamental economic principles”
include creating contractual relationships, hedging, and mitigating
settlement risk. “Certain methods of organizing human activities”
include “using an algorithm for determining the optimal number
of visits by a business representative to a client,” and “computing
a price for the sale of a fixed income asset and generating a finan-
cial analysis output.” “Mathematical relationships and formulas”
include mathematical formulas for hedging, and formulas for
managing life insurance policies by performing calculations and
manipulating the results.

In order to be patent-eligible, claims that include these types of
abstract ideas must then be examined to determine whether the
idea has been applied in a manner such that the claim amounts to
significantly more than the abstract idea itself. Claims that may be
enough to qualify as “significantly more” include:
 •improvements to another technology or technical field;
 •improvements to the functioning of the computer itself;
 •meaningful limitations beyond generally linking the use of
 an abstract idea to a particular technological environment.
Meaningful limitations that can make a software process patentable
often take the form of a specific combination of a number of pro-

 13

cessing steps that solves an application-specific problem. However,
if a claim does no more than require a computer to perform “gener-
ic computer functions that are well-understood, routine and con-
ventional activities previously known to the industry [,]” the claim
fails the “significantly more” standard.

In July 2015, the USPTO issued an update regarding subject
matter eligibility in the wake of Alice Corp. The 2015 update
gives detailed examples and analysis of claims that both meet and
fail the “significantly more” criteria. The update also stresses the
importance of reading the elements of a claim both separately and
in combination to determine whether the claim amounts to signifi-
cantly more than an abstract idea.

For example, “generic computer components that individually per-
form merely generic computer functions are able in combination
to perform functions that are not generic computer functions and
amount to significantly more.” However, computer functions that
simply perform repetitive calculations, receive, process, and store
data, or automate mental tasks have been found by courts to consti-
tute conventional and generic functions, and thus fail the “signifi-
cantly more” standard.

2.4 Novelty and Non-obviousness

If subject matter eligibility is established, the patent examiner
will then consider novelty. To determine whether the invention is
new, the examiner will search for “prior art” related to the claimed
invention. Prior art includes patents, patent applications, descrip-
tions in a printed publication, or products in public use, on sale, or
otherwise available to the public on, at, or before the time a patent
application is filed. If the invention is identical to the prior art, then
it is deemed “anticipated.” Prior art also anticipates the claimed
invention if all elements described in the claims of an application
are contained in that prior art.

The non-obviousness requirement of the Patent Act assesses

14

whether an invention would have been obvious to a practitioner
skilled in the particular art at the time of filing. The patent examin-
er assumes a hypothetical person with ordinary skill in the relevant
field of technology would be aware of all of the prior art existing at
the filing date of the invention for purposes of determining non-ob-
viousness. The Supreme Court has established various tests for
determining if an invention is obvious. In 2007, the Supreme Court
announced a new multi-factor test to evaluate non-obviousness in
its KSR Int’l Co. v. Teleflex Inc. decision. The test focuses on six
factors, in part designed to distinguish the creative characteristics
of someone of ordinary skill in the art that are obvious from those
that are inventive. The idea is that ordinary creativity would be
obvious to a person of ordinary skill, and ordinary creativity is not
enough to satisfy the non-obviousness requirement. The following
are the six factors:

 1. Combining prior art elements according to known
 methods to yield predictable results;
 2. Simple substitution of one known element for another to
 obtain predictable results;
 3. Use of a known technique to improve similar devices,
 methods, or products in the same way;
 4. Applying a known technique to a known device, method,
 or product ready for improvement to yield predictable
 results;
 5. Obvious to try—choosing from a finite number of
 identified, predictable solutions, with a reasonable
 expectation of success; and
 6. Known work in one field of endeavor may prompt
 variations of it for use in either the same field or a
 different one based on design incentives or other market
 forces if the variations are predictable to one of ordinary
 skill in the art.

There are guidance documents published by the USPTO to explain
these and other analyses performed by the patent examiner. For
example: Examination Guidelines for Determining Obviousness

 15

under 35 U.S.C. 103 In View of the Supreme Court Decision in
KSR International Co. v. Teleflex Inc.

2.5 The Possibilities of Means-Plus-Function Claims

The Supreme Court’s decision in Alice Corp. made it more diffi-
cult for applicants to obtain patents for processes implemented in
software, especially given the breadth with which the decision is
being applied. After Alice, the rate of rejection of applications for
software process applications has exceeded 80% in some of the
USPTO’s art units where it was previously below 40%. Means-
plus-function claims, however, may provide some relief to appli-
cants seeking to patent an algorithm couched as a process.

 Title 35, § 112 (f) of the U.S. Code states:
an element in a claim for a combination may be expressed as a
means or step for performing a specified function without the recit-
al of . . . acts in support thereof, and such claim shall be construed
to cover the corresponding . . . acts described in the specification
and equivalents thereof.

These types of claims are known as “means-plus-function” claims
because such claims usually begin with the words “a means for . .
.” followed by a general description of the function of the inven-
tion. Some practitioners believe that means-plus-function claims
are the best way to attempt to patent software-implemented pro-
cesses in the wake of Alice Corp.

Computer programs are usually broken down into modules or
subroutines characterized by a specific function. When software
claims focus on the function of the modules, the protection of the
patent is arguably broad enough to take into account the differ-
ent methods of accomplishing the function thereby thwarting the
ability of competing software programmers to accomplish the same
function. Means-plus-function claims help avoid rejection due to
abstract subject matter. The purpose behind means-plus-function
construction is to clearly limit the scope of the claim to a particular
physical implementation. A means-plus-function claim seeks to

16

encompass specific algorithms that transform¬ an otherwise gener-
al-purpose computer into a special-purpose computer programmed
to perform the recited function.

The downside, however, is that means-plus-function claims pro-
vide limited protection given that the interpretation of what con-
stitutes an “equivalent thereof” (from the patent statute) is not
well-settled. It may be difficult, therefore, for an owner of a patent
containing means-plus-function claims to demonstrate an equiva-
lent function in an infringing process/algorithm. Furthermore, the
function of a potentially infringing equivalent device must perform
precisely the same function as the means-plus-function claim,
leaving only insignificant differences in the way and result that the
accused device functions, in order for infringement to be found.

2.6 Patent Costs and Filing

When applying for a patent, applications are subject to a payment
of a basic fee as well as additional fees, including a search fee, an
examination fee, and an issue fee. Excess fees are also due where
applications include more than 20 claims. Patent application filing
fees can be found at www.uspto.gov/learning-and-resources/fees-
and-payment/uspto-fee-schedule#Patent%20Fees.

The USPTO fees are minimal in comparison to attorney fees to
draft a patent. Although patents are attractive to investors and may
protect a company’s software, they are expensive to procure, and
very expensive to defend if infringed upon. Patent prosecution
expenses vary widely depending on the complexity of the appli-
cation, but a range between $5,000 and $15,000 is representative
for U.S. applications. Separate prosecution fees are payable for
each country in which a patent is sought. According to the Amer-
ican Intellectual Property Law Association, where $1 million to
$25 million is at risk, the cost of an average patent lawsuit is $1.6
million through the end of discovery and $2.8 million by the end of
the trial.

 17

This reality has led some software developers to rush to be the
first to market, try and obtain users, and keep as much as possi-
ble about the code and architecture as a trade secret. It should be
kept in mind that patents can be valuable outside of the context of
infringement lawsuits, for example: (1) to demonstrate credible
technology to potential investors, (2) to motivate competitors to
design around the patent to avoid infringement, and (3) to stop
infringement with the threat of an infringement lawsuit (defense
of an infringement lawsuit is as expensive as the plaintiff’s costs to
pursue the case).

2.7 Time for Receiving a Patent

The time between filing and obtaining a patent can be three to five
years, somewhat faster if a provisional patent application is not
filed. Applicants can expect to hear from the USPTO about two
years after applying due to a backlog of several thousand appli-
cations. This first communication is known as an “office action.”
The applicant will then respond to the action, followed by another
response by the USPTO. The patent examiner and the applicant
will typically communicate back and forth as patents are often
rejected at first, and the applicant and attorney will negotiate with
the examiner. By the end of this process, it will typically take about
three years from the date of initial application to receive a patent.

2.8 Strengths of Protecting Software with a Patent

Companies seek patents for a number of reasons. Patent applica-
tions are a minimum requirement of some investors. Patents are
valuable for defensive reasons if a company is accused of infring-
ing another patent by a competitor or non-practicing entity. Patents
can be a valuable negotiation tool should the company infringe
another patent, enabling the company to offer a cross-licensing
agreement with its patent for rights to the infringed patent.

2.9 Weaknesses of Protecting Software with a Patent

There are differing opinions about the value of software patents

18

for startup companies, even if one can be obtained. This is in part
because software iterates quickly to address changing systems and
challenges, and by the time a patent is granted, the software can be
obsolete. It is not feasible for startups to seek protection for each
iteration.

Another factor affecting the value of a software patent is that
during patent prosecution, claims are often narrowed to such an
extent they do not provide a value commensurate with the expense
to procure them. Other concerns about seeking patent protection
include publication of the inventive aspects of the process. In soft-
ware, the architecture of the process becomes available to com-
petitors regardless of whether the patent is granted or not, perhaps
providing information that will help develop a competing product.
In addition, patents that are granted can be challenged as invalid.

It may be difficult to determine whether a competing product
infringes a patent because even if the competing software is ex-
amined, only the object code would be available, and it may be
difficult for the patent owner to discover a case of infringement,
thereby potentially nullifying the benefit of patent protection (or
any kind of IP protection). An owner of a software process patent
must still enforce the rights the patent affords, and to do so requires
a way to detect potential infringement. Patents are sometimes
infringed without the knowledge of the patent owner. When the
patent owner is aware of the infringement, it takes money and time
to enforce the patent and bring an infringement action.

3 Trade Secret Protection

Software is a good candidate for protection as a trade secret,
because it is distributed to customers only in the form of object
code, which cannot be read by people. Therefore, the source code,
and possibly parts of the architecture (i.e. the functional process
implemented by the source code), can be kept as a secret, access to
which is limited to programmers, who can be required by contract
to keep information about the architecture and the source code se-

 19

cret. While patent protection requires the disclosure of the architec-
ture, there is not a similar requirement for trade secret protection.
Trade secret protection therefore can be applied to software code,
and the architecture to the extent the process is not evident from
using the software and interacting with the user interfaces.

However, trade secret protection does not eliminate the possibility
that two developers could create very similar software to address
the same problem or perform the same functions. The developer
who is second to create the software has full rights to commercial-
ize it so long as it was independently developed and not gained by
improper means, which, in trade secret terminology, is misappro-
priation.

3.1 Elements of a Trade Secret

Trade secrets are defined by the Defend Trade Secrets Act of 2016,
found at: 18 USC 1839 (3) as:
 “all forms and types of financial, business, scientific, technical,
economic, or engineering information, including patterns, plans,
compilations, program devices, formulas, designs, prototypes,
methods, techniques, processes, procedures, programs, or codes,
whether tangible or intangible, and whether or how stored, com-
piled, or memorialized physically, electronically, graphically,
photographically, or in writing if—
(A) the owner thereof has taken reasonable measures to keep such
information secret; and
(B) the information derives independent economic value, actual or
potential, from not being generally known to, and not being readily
ascertainable through proper means by, another person who can
obtain economic value from the disclosure or use of the informa-
tion,”

A trade secret establishes its value by giving the owner of the in-
formation an economic advantage over competitors.

20

3.2 Reasonable Precautions to Maintain Secrecy

Once a company determines it has inventive software that rep-
resents economic value to the company, is not known to the public,
and is not readily ascertainable by proper means such as reverse
engineering, the company must take reasonable measures to main-
tain the secrecy of the source code and architecture if it opts to
protect the software via trade secret. A company’s mere intent that
some information remain secret is not enough to fulfill the re-
quirement. The company must take concrete, reasonable security
measures to maintain the secret if it wishes to seek recourse in the
courts for misappropriation.

Defining reasonable security measures for protection of a trade
secret is challenging as courts determine what is reasonable on a
case-by-case basis. However, the courts have outlined some basic
requirements, including marking documents that describe the trade
secret as confidential and limiting access to these documents with
appropriate means, such as locked cabinets or rooms, safes, fences,
or guards, depending on the circumstances. Everyone who is given
access to the trade secret must sign a confidentiality agreement
that identifies the information that must be kept secret. Additional
measures include disclosing to the people who are given access to
the trade secret only the portion of the trade secret necessary for
them to do their work, distributing company phones or computers
that must be returned to the company upon termination of employ-
ment to minimize the ability to copy trade secret documentation,
employing encryption of software to make reverse engineering
difficult, and utilizing software that enables self-destruction after
detecting copying.

Courts have held that some disclosures, unprotected by nondisclo-
sure agreements or other limits, did not void trade secret protection
in cases where an implied confidential relationship existed between
the company disclosing the trade secret and the recipient of the
information. However, companies should not rely on implied confi-
dential relationships to protect trade secrets; a written confidentiali-

 21

ty agreement should be obtained.

3.3 Misappropriation

To establish a successful trade secret claim, a plaintiff company
must show that the defendant misappropriated the trade secret in
order to recover damages. There is no infringement remedy for
trade secrets because trade secrets do not involve inherent property
rights, such as the rights created by an issued patent. As explained
above, trade secret rights do not prevent either independent inven-
tion of the subject matter of a trade secret, or reverse engineering
of the trade secret by purchasing a product that embodies the trade
secret and disassembling it to understand how it works. Misappro-
priation is established when the trade secret is acquired by improp-
er means, such as stealing it or using it in violation of a confidenti-
ality agreement.

The plaintiff must establish that the defendant had access to the
trade secret (e.g., a rogue software developer), or gained access
to the trade secret by deception (e.g., industrial espionage), and
subsequently used the information without the permission of the
owner. Use of a trade secret by another without permission is not
automatically misappropriation. If a trade secret is discovered
through reverse engineering, it is proper, and the original trade
secret owner will not prevail in a claim against the second inventor
because it was not obtained via misappropriation. If it is difficult
to reverse engineer a software program, protecting it by means
of trade secret is an attractive mechanism to keep a competitive
advantage for a long period of time.

It may become necessary or financially beneficial for a company
to disclose its trade secret to another. A company can do this and
not waive its trade secret as long as reasonable precautions, such
as nondisclosure agreements, are taken to protect the information.
These types of disclosures allow outside parties to properly obtain
trade secrets under a confidential relationship. Even though these
trade secrets have been properly obtained, it is still possible for a

22

company to misappropriate the protected information if the compa-
ny uses or discloses it in a way that was not agreed upon.

3.4 Advantages of Trade Secret Protection

Trade secrets are advantageous to software companies because
protection lasts as long as the secret is maintained. Additionally, no
disclosure of source code or process is necessary for the protection,
unlike copyrights and patents, which both require disclosure. This
makes trade secrets an attractive option for software developers,
in spite of the fact that there is no protection against independent
creation or reverse engineering. No registration or other interaction
with a government agency, such as the USPTO, is necessary for
trade secret protection of software.

3.5 Weaknesses of Trade Secret Protection

The disadvantages to protecting software as a trade secret in-
clude the fact that it does not prevent a competitor from inventing
something similar or reverse engineering the program. If a trade
secret is discovered through these legal means, there is no way to
prevent its use by competitors. Thus, trade secrets are most valu-
able when it is unlikely or almost impossible that someone could
reverse engineer the product or independently discover it on their
own. Finally, once software is released and available to the public,
other coders may independently create a similar program with their
own code. Another drawback of using trade secret is that once it is
discovered and published, or otherwise disclosed, it ceases to be a
secret.

4 Copyright Protection

Copyright provides legal protection for original works of author-
ship fixed in a tangible medium of expression. Copyright law
protects literary, dramatic, musical, and artistic works, such as
poetry, novels, movies, songs, computer software, and architecture.
Software source code is considered a written work, because it is

 23

written in high-level programming language that can be read by
people who understand the language. Registration of the copyright
for source code also protects the object code version of the soft-
ware, even though it is in the form of digital bytes that cannot be
read by humans, because the object code is a direct translation of
the source code, which is done in a standardized way by a compiler
that presents the information contained in the source code. Copy-
right protects the right to copy, distribute, and create derivatives of
the original, but it does not protect the underlying process executed
by the software. Therefore, a software program that performs the
same process carried out by different source code (i.e., not copied
or derived from the original) does not infringe a software copy-
right, and software copyright protection is narrower than software
patent protection.

Copyright comes into existence at the time of creation of the pro-
tectable work, and registration is not necessary to obtain the copy-
right in the protected work. However, to enforce the copyright, the
work must be registered with the Copyright Office. Registration re-
quires a disclosure of the work; for example, a copy of the book or
the source code for the software. Copyright protection lasts for the
life of the author plus 70 years after the author’s death. If the work
was created for a company pursuant to a “work for hire” agreement
with an employee within the scope of their employment, the work
receives copyright protection for either: (1) 95 years after the com-
pany registers the copyright protected work, or (2) 120 years after
the company creates the work, whichever expires first.

The copyright holder must file a copy of software source code with
the U.S. Copyright Office to register the copyright in the software.
Registration is a simple process and enables the copyright holder to
enforce the copyright by legal infringement action against a copy-
right infringer in federal court. Registration of a copyright requires
completing an online application form, submitting the copy of
source code, and paying a $35 to $55 filing fee (compared to the
thousands of dollars required to obtain a patent). It is possible to
redact certain portions of the source code to prevent revealing trade

24

secrets, but the extent of redaction is governed by specific rules,
and the minimum amount of source code that is filed could reveal
the trade secrets embodied in the software. The effectiveness of
allowed redaction of source code for purposes of copyright reg-
istration must be evaluated on a case-by-case basis. Registering a
software copyright will provide immediate protection if the work is
copied.

4.1 Disadvantages to Copyright Protection for Software

Because a copyright only protects the source code itself, develop-
ers can create a different code that performs the same function, and
they will not be infringing on the copyright. Copyright infringe-
ment may be difficult to detect and prove, especially with software,
because it would have to be demonstrated that the exact code was
copied. In terms of detection, in most cases an algorithm will not
be widely disclosed for inspection and identifying an infringing
algorithm could be difficult and highly speculative. Once infringe-
ment is detected, a plaintiff must still prove infringement in court.
Furthermore, if source code is likely to become obsolete quickly,
it may not make sense to register the copyright due to the short
commercial lifecycle of the source code.

4.2 Copyright Infringement

To establish a cause of action in court for copyright infringement,
a plaintiff must prove (1) ownership of a valid copyright, and (2)
copying of original elements of the work.

Whether someone an accused defendant copied the plaintiff’s
copyrighted material is a factual question of whether the defendant
actually used the copyrighted work to create his or her own work.
A copyright violation is demonstrated through circumstantial evi-
dence establishing: (1) access to the plaintiff’s work and (2) proba-
tive similarities between the works. A defendant is able to rebut the
evidence. For example, the defendant may be able to demonstrate
he could not reasonably have had access to the plaintiff’s work.

 25

A correlation between two software programs/algorithms can
be due to a number of things, including third-party source code,
similar code generation tools, commonly used elements, a common
author, or copying. Programmers may develop a program at one
company then leave and independently develop a program at an-
other company. This is perfectly legal and, if done correctly, does
not constitute copyright infringement. Only copying that is unau-
thorized and substantial constitutes copyright infringement.

26

